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Size effects due to Cosserat elasticity and surface 
damage iin closed-cell polymethacrylimide foam 
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This article describes the experimental investigation of Cosserat (or micropolar) elasticity and 
surface damage effects in closed-cell polymethacrylimide foams of different densities. The method 
of size effects was used to find the degree of Cosserat behaviour for both cylindrical and square 
cross-section specimens in bending and torsion. The foams were found to behave as Cosserat 
materials in which slender specimens appear less stiff than thick ones, provided sufficient care is 
taken when machining the specimens. Surface damage caused by the machining process may 
cause the apparent stiffness to decrease with decreasing specimen size, giving an opposite 
softening size effect. 

I .  I n t roduct ion  
Cellular solids are two-phase composite materials in 
which one phase is solid and the other is a fluid, most 
often air. If the size scale becomes large enough, the 
material may no longer be assumed to be continuous. 
Some researchers have found that classical elasticity 
theory does not always adequately describe the beha- 
viour of cellular materials. In composite materials 
with stress concentrations due to holes or cracks, the 
observed fracture behaviour is not correctly predicted 
by the classical theory of anisotropic elasticity. The 
experimental stress concentrations are consistently 
less than the theoretical ones [1]. The non-classical 
fracture behaviour has been dealt with using point 
stress and average stress criteria; however, that ap- 
proach cannot account for non-classical strain distri- 
butions in objects under small load. Strain distribu- 
tions have been observed in fibrous composites and 
cellular solids which differ from the predictions of 
classical elasticity, particularly near small holes and 
small cracks. Observed concentrations of strain are 
less than predicted values. Strain fields around large 
holes, by contrast, follow classical predictions. A more 
general continuum theory, such as Cosserat elasticity 
or non-local elasticity, may be of use in predicting 
non-classical strain distributions. 

In this study, size effects in the mechanical rigidity 
of foams are examined experimentally. Analysis of the 
results is via generalized continuum mechanics and 
a model of surface damage. 

2. T h e o r i e s  
2.1. C os se r a t  e las t ic i ty  
The Cosserat theory of elasticity [2, 3], also called 
micropolar elasticity [4], incorporates the local rota- 
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tion of points as well as the translation allowed in 
classical elasticity. Moreover, there is a torque per unit 
area, or couple stress, as well as the usual force per 
unit area, or stress. The rationale is to incorporate 
some aspects of meso-scale structure of materials in 
a continuum description of mechanical behaviour. In 
a foam material viewed as a Cosserat solid, the local 
rotation can be viewed as the rotation of nodes be- 
tween ribs in the foam, and the couple stress can be 
viewed as a spatial average of the bending and twisting 
moments transmitted by the foam ribs. The constitu- 
tive equations for a linear isotropic Cosserat elastic 
solid are [-4] 

~ = )~rr6~Z + (2g + ~:)ak~ + ~C~k..(rm -- q~m) (1) 

mk~ = ~qbr, r a ~  + 134~,~ + ~,qb~,~ (2) 

in which Ok~ is the force stress (which is a symmetric 
tensor in classical elasticity but is asymmetric here), 
mkt is the couple stress (or moment per unit area), 
~k~ = (U~.~ + Ut.k)/2 is the small strain where, u is the 
displacement, and ~k~m is the permutation symbol. The 
microrotation % in Cosserat elasticity is kinemat- 
ically distinct from the macrorotation rk = ~k~mU,,.~/2. 
The usual Einstein summation convention for re- 
peated indices is used and the comma denotes differ- 
entiation with respect to spatial coordinates indicated 
by the subscripts, which can assume values 1, 2, 3. In 
three dimensions there are six independent elastic con- 
stants required to describe an isotropic Cosserat elas- 
tic solid: ~, ]3, % ~c, )~ and g. The technical engineering 
constants derived from the elastic constants are pres- 
ented in Table I [4, 5]. Classical elasticity is a special 
case, achieved by allowing ~, ]3, ;, and ~ to become 
zero. The classical Lam6 elastic constants X and g then 
remain and there is no couple stress. 
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TABLE I Cosserat engineering constants 

Engineering constant Formula 

Young's modulus (2g + •)(3X + 2g + n) 
E -  

2 X + 2 p + K  

Shear modulus 2p + ~c 
G ~ -  

2 

Poisson's ratio X 
v 

2X+2u+K 
= ( [ 3 + 7 ' ]  t/2 Characteristic length for torsion It \ 2 ~ ]  

( -F  Characteristic length for bending lb = }(2~21_ K)J 

Coupling number ( ~ 1 / 2  

u = \2(~ + ~)/ 

Polar ratio [3 + 3' 
~I  / - -  _ _  

~ +  [3 + ' f  

For a particular material, the appropriate constitu- 
tive equation must be determined by experiment. Cos- 
serat elasticity is thought to offer advantages over 
classical elasticity in the prediction of stresses in ma- 
terials with microstructure. In particular, analytical 
solutions for stress concentrations around circular 
holes [6] and elliptic holes in plates disclose smaller 
stress concentration factors in a Cosserat solid as 
opposed to a classical solid. Similar results have been 
obtained for the predicted stress intensity factors for 
cracks in plates as well as planar circular cracks in 
three-dimensional solids. 

Another consequence of Cosserat theory is that 
a size effect i s predicted in the torsion and bending of 
rods [5]. The apparent modulus of the rods increases 
as their size decreases. A size-effect behaviour consist- 
ent with that predicted by Cosserat theory has been 
observed in some cellular materials, including bone 
and some man-made foams [7 9]. The six Cosserat 
elastic constants were found for some of these mater- 
ials [7, 9]. 

2.2. Non- loca l  elast ici ty 
Another generalized continuum theory that has been 
proposed for the analysis of cellular materials is non- 
local elasticity. In an isotropic non-local solid the 
points can only undergo translational motion as in the 
classical case, but the stress at a point depends not 
only on the strain at that point, but on the strain in 
a region near that point. The constitutive equation for 
an isotropic non-local solid is [10, 11] 

~u(x) = s  xl)a.(x')Sij 

+ 21.t(lx'- xl)eu(x')}dV(x') (3) 

A simpler representation is 

o,,(x) =fv{<X'- XI)P~rr(X')SU 

+ 2geu(x')] dV(x') (4) 
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with the non-local kernel et(/x/) subject to ~v 

ct(lxl)dV = 1, requiring the kernel to be a member of 
a Dirac delta sequence. So, in the limit of the non-local 
distance of influence or characteristic length a becom- 
ing vanishingly small, the classical Hooke's law is 
recovered. 

As with Cosserat elasticity, there is a size effect 
predicted in bending and torsion with non-local elasti- 
city. There also is predicted a size effect in tension. 
However, the size effect in non-local solids may be 
opposite to that in Cosserat solids, i.e. the apparent 
elastic moduli would decrease with decreasing speci- 
men size. Lakes [12] showed that this phenomenon 
arises in bending, torsion and tension when, near the 
surface, only a portion of the kernel's region of influ- 
ence is integrated over the stress and hence contrib- 
utes to it. Thus, if the kernel is positive definite 
throughout its range, then there is a surface layer of 
depth a in which the stress is less than the product of 
Young's modulus E and the strain ~. If the kernel is 
not positive definite, and goes negative over part of its 
range, then there may be a stiffening effect of small 
specimens. So non-local elasticity theory allows both 
the apparent increase in modulus with decreasing spe- 
cimen size (as with Cosserat elasticity) and the appar- 
ent decrease in modulus with decreasing specimen 
size. 

2.3. The s t ructural  v iew 
The physical origins of the size effects predicted in 
Cosserat elasticity lie in the bending and twisting 
moments transmitted in the fibres of composites or the 
ribs in foams. The characteristic length I may be of the 
order of the spacing between fibres in a composite 
[13]; in cellular solids it may be related to the average 
cell size [14]. The characteristic length for macro- 
scopically homogeneous solids such as single crystals 
or amorphous materials is of the order of the atomic 
spacing, much too small to be perceptible in any 
macroscopic mechanical experiment [9]. 

The physical mechanism underlying non-local elasti- 
city is long-range cohesive force. An example is the 
electromagnetic force between ions in a crystal. In 
foams and fibrous systems, the generation of long- 
range forces is not so easy to visualize. 

An alternative to the above continuum views and 
their associated physical processes is the structural 
view of edge or surface effects. In a foam, the cells at 
the edge of a specimen are incomplete. These edge cells 
contribute to the volume of the specimen, but are not 
able to carry much load. Hence, the effective stiffness 
of the specimen is less than would be expected, pro- 
ducing an "anti-Cosserat" effect. Moreover, a surface 
damage layer would also produce this effect, which 
becomes more pronounced as the specimen size ap- 
proaches the cell size. Fig. 1 shows the relative size 
effects possible due to Cosserat elasticity and an edge- 
effect model described below, as compared to a clas- 
sical elastic solid. 

The edge-effect model for round specimens is an 
extension of that developed by Brezny and Green [15] 
for square specimens. The derivation is described in an 
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Figure 1 Analytical size-effect curves for rods in torsion under sev- 
eral assumptions:  rigidity divided by square of diameter versus 
square of diameter, assuming G ~ 28 M P a  and cell size of 1 mm. 
Classical elasticity ( -  - )  gives a straight line through the origin. 
Cosserat  elasticity ( [] ), which incorporates moments  carried by cell 
ribs, gives a stiffening effect of small specimens. Surface damage or 
incomplete surface cells give a softening effect. The Cosserat  curve 
was derived with N 2 = 0.49, It - 0.34 mm, �9 = 1.5 and v = 0.35. 
The edge-effect curve ( 0 )  assumes classical material with damage 
layer thickness X = 0.5 cells and modulus  ratio n = 0. 

earlier study [16]. In this method, a beam of diameter 
d containing an outer layer of thickness X of incom- 
plete or damaged cells can be thought of as a com- 
posite, with the inner portion consisting of material 
1 with moment of inertia I1 and modulus E1 (and G1), 
and the outer layer consisting of material 2 with mo- 
ment of inertia I2 and modulus E2 (and G2). The effect 
of the damage layer is to reduce the apparent rigidity 
of small specimens, producing a Softening effect with 
decreased specimen size [15, 16]. The ratio of the 
apparent modulus (subscript e) to the theoretical 
modulus (subscript o) is then given by 

E~ Ie 1 
- Io - d 4 [ ( d - 2 X ) 4 ( 1 - n ) + n d  4] (5) 

Eo 

Where d is the specimen diameter, X the damage layer 
thickness and n the ratio of the damage layer modulus 
to the inner material modulus, E2/E1.  Similar ana- 
lyses of round and square specimens in torsion yield 
the same results for relative moment of inertia and 
relative modulus. 

Edge effects of this type have been reported for 
open-cell carbon foams in bending [15] and were 
attributed primarily to incomplete cells at the surface. 
The softening effects were also reported for closed-cell 
polymethacrylimide foam and open-cell copper foam 
[16] in both bending and torsion. In this case, edge 
effects were considered to be caused by both an in- 
complete cell layer and surface damage due to ma- 
chining. In the present study a rigid, closed-cell poly- 
methacrylimide foam (Rohacell ~, Cyro Industries) 
was tested in an attempt to reduce the effects of ma- 
chining damage and discover any Cosserat behaviour. 
It is hoped that understanding the effects of local 
inhomogeneities and surface damage will allow sub- 

stantial improvement in foam mechanical properties 
and open new applications for cellular materials. 

3. Experimental procedure 
The Rohacell foam (see above) was tested by the 
method of size effects [7-9].  Three grades were used: 
WF51 (p = 0.06 gcm-3) ,  W F l l 0  (p = 0.11 gcm-3) ,  
and WF300 (p = 0.38 gcm-3) .  The cell size of the 
foams was determined by counting the number of cells 
along a 10 mm line. Both square and cylindrical cross- 
section specimens were made. The square cross-sec- 
tion specimens were cut first with a low-speed dia- 
mond saw. One specimen from each of three densities 
was cut. Further reduction in cross-section was ac- 
complished by hand, using abrasive impregnated pa- 
per. Very light pressure was used, giving a cutting 
speed of approximately 0.25 m s-1. Material was re- 
moved at approximately 0.01 cm3min -1 for the 
WF300 foam, 0.02cm3min -1 for W F l l 0  and 
0.06 cm 3 min-  1 for WF51. 

The round specimens were first rough-cut into 
blocks, then machined round on a lathe. One speci- 
men from each of the three densities of foam was cut, 
with further reductions in cross-section made with the 
abrasive method on the lathe. Surface cutting speeds 
ranging from 0.24 to 0.86 m s-  1 were obtained; mater- 
ial was removed at about 0.007 + 0.002 cm 3 rain- 1 for 
the WF300 foam; 0.04 _4- 0.01 cmamin -1 for W F l l 0  
and 0.15 _4- 0.03 cm 3 min - I  for WF51. 

The specimens were tested using a micromechanics 
apparatus described previously [7, 8]. Torque is ap- 
plied via a permanent magnet attached to the end of 
a specimen. The magnet is placed at the centre of 
a Helmholtz coil which produces a uniform magnetic 
field when an electric current is applied. Angular dis- 
placement is measured optically using laser inter- 
ferometry. The specimens were loaded sequentially in 
both torsion and bending, and values for rigidity were 
calculated. 

Exact analytical solutions for the torsion and pure 
bending of a circular cylinder of a Cosserat solid are 
available. Gauthier and Jahsman [5] developed the 
solution for a circular cylinder in torsion; for bending 
the solution was given by Krishna-Reddy and Ven- 
katasubramanian [17]. An approximate solution for 
a Cosserat rectangular prism in torsion was found by 
Park and Lakes [18]. This approximation keeps the 
error under 10% for a wide range of elastic constants, 
and for 0 ~</3/7 ~< 0.6 [18]. There is also an approx- 
imate solution for a square bar in bending. This solu- 
tion assumes that the ratio 13/7 is equal to the negative 
of the Poisson's ratio and is exact for that case only. 

A term to account for surface effects may be in- 
cluded in the analysis for Cosserat elasticity. The ri- 
gidity ratios (rigidity of a Cosserat solid over rigidity 
of a classical solid) for circular cylinders in torsion and 
bending, respectively, then become 

Cosserat Surface effects 
(6) 
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and 

8NZE(~/?) + v] 2 ] 
+ + J 

Cosserat 

((a - X)4(l - n) ) 
x a4 + n (7) 

Surface effects 

where a is the specimen radius, X the damage zone 
thickness on the surface of the specimen and n the 
ratio of the modulus of the damage layer to that of the 
foam, E2/Et. The terms X and ~ are functions of the 
Cosserat constants [5, 17]. Z = 11 (pa)/pa Io (pa), and 
p2 = 2K/(a + 13 + 7). I1 and Io are the modified Bessel 
functions of the first kind. ~(Sa)=(Sa)2[(Sa 
Io(Sa)-  It(Sa))/(Sa Io(Sa)-  211(8a))], and 8 =  
N/lb. The above formulation assumes a linear super- 
position of Cosserat stiffening due to rib bending and 
twisting with the softening effect due to a layer of 
incomplete cells and/or surface damage. The surface 
effects term tends to compete with the size effect pre- 
dicted in Cosserat theory, causing an "anti-Cosserat" 
effect. 

The solutions for the Cosserat solids depend on the 
elastic constants in complex ways. This makes it diffi- 
cult to numerically analyse a material based on these 
equations. The approach used here was to graphically 
determine the shear and Young's modulus by using 
a least-squares linear regression of the data on a plot 
of rigidity divided by the square of the diameter versus 
the square of the diameter. In classical elasticity, the 
plot of the data would be expected to pass through the 
origin. If the Rohacell were a Cosserat elastic material, 
the plot of the data would be expected to have the 
same slope, but appear to intercept the vertical axis 
above zero. If edge effects dominate, however, the plot 
of the data would appear to intercept the vertical axis 
below zero. The slopes of the plots are proportional to 
the elastic shear modulus G for torsion and Young's 
modulus E for bending, regardless of Cosserat or 
classical elasticity. The graphically determined moduli 
were then put into the equations for rigidity, and the 
other elastic constants could then be varied to find the 
best fit through the data. The best fit was determined 
by minimizing the residual error, i.e. the sum of the 
squares of the deviations with experiment. This is 
similar to the approach used by Lakes [7]. 

4. R e s u l t s  and d i s c u s s i o n  
The results for the square abrasive-machined Rohacell 
show evidence of Cosserat behaviour for all grades of 
the foam. In all cases ~ was assumed to be 1.5, since its 
effect is only seen very near the origin of the graph [5, 
17, 18]. Values for G and E were determined from 
least-squares linear fits of the data. The torsion results 
of the square cross-section WF300 specimens are 
shown in Fig. 2; the bending results are in Fig. 3. The 
dashed lines in the figures represent a classical curve 
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Figure 2 (E3) Size-effect results for square, abrasive-machined 
Rohacell WF300 (width a) in torsion, with Cosserat  curve fit for 
N 2 =  0.01. The best-fit curve for this value of N ( - - )  gives 
l, = 0.8 ram, l b = 0.77 m m  and residual error  = 3.47 k N  2. The clas- 
sical curve ( - - - )  has a residual error  of 50.5 kN z. 
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Figure3 ( O )  Size-effect results for square, abrasive-machined 
Rohacell WF300 (width a) in bending. The best-fit Cosserat  curve 
( ) gives E = 637 MPa,  Ib = 0.78 mm, v = 0.13 and residual 
error  = 34.6 k N  2. The classical curve ( -  - - )  has a residual error  of 
550 kN z. One point  (circled) is a statistical outlier not  used in 
residual calculations. 

fit. A best-fit Cosserat elastic curve is shown with 
a solid line. The residual for the classical curve is 
about 20 times as large as that for the Cosserat curve 
in both torsion and bending. These curves are typical 
of the results for the W F l l 0  and WF51 tests; the 
residual for the classical torsion curve is six times that 
of the best-fit Cosserat curve for the WF110, and ten 
times larger for the WF51 data. 

The Cosserat engineering constants derived from 
the best-fit Cosserat curves are given in Table II. Ob- 
served cell sizes are also shown in Table II; the error 
estimate is + 0.05 mm. Different trial values for N z 
give similar residuals and characteristic lengths, so the 
value of N 2 is not well determined. However, there are 
not enough data points close to the origin to be able to 
effectively distinguish this curve from the others. More 
data points at smaller diameters would be needed to 
determine which curve is most appropriate. 



TABLE II Results of size-effect tests on Rohacell foam 

Specimen Grade G E N 2 l t I b Cell size X/cell size 
type (MPa) (MPa) (ram) (mm) (mm) 

Square abrasive WF300 285 637 0.01 0.8 0.77 0.65 - 
WFll0 75 216 0.01 0.52 0.35 0.5 - 
WF51 29 66 0.04 0.54 0.55 0.67 

Round abrasive WF300 a 295 - 0.04 0.43 
WF300 b - 672 0.09 0.38 0.48 - 
WFll0 a 75 - 0.01 0.52 0.35 0.08 
WFll0  b - 215 0.01 0.52 0.35 0.03 
WF51" 30 - 0.04 0.54 0.55 0.12 
WF51 b - 65 0.04 0.54 0.55 0.20 

Torsion tests. 
b Bending tests. 

Of  the r o u n d  specimens mach ined  by the abras ive  
method ,  only  the W F 3 0 0  foam demons t r a t ed  size ef- 1.4. 
fects consis tent  with Cossera t  elasticity. In tors ion,  the 
classical curve had  a residual  only  abou t  four  t imes as 
large as the Cossera t  (Fig. 4). There  is more  scat ter  in 
these d a t a  than  with the square  specimens,  which m a y  
account  for the ra ther  large residual  error.  The curves 
for the r o u n d  specimens show an obvious  effect of 
changing  the value of N: as N is increased,  the curve 
makes  a sharper  t rans i t ion  to the l inear  po r t i on  of  the 
curve. This makes  it necessary to have da t a  very near  
the origin (very small  specimens) to de termine  the best  
value for N. The best-fit  bend ing  curve for r o u n d  
W F 3 0 0  p roduced  a residual  factor  of eight less than  
the classical curve (Fig. 5). The  square  specimens of 
W F 3 0 0  p roduced  a residual  factor  of eight  less than  
values for r o u n d  specimens.  However ,  the charac te r -  
istic lengths for the square specimens are near ly  twice 
those of the r o u n d  specimens. This d iscrepancy m a y  
be due to more  surface damage  in the round  specimens 
than  in the square  ones. The rate  of mate r ia l  r emova l  
with the r o u n d  specimens was a b o u t  twice that  of  the 
square  specimens,  poss ib ly  leading to more  surface 
machin ing  damage.  Such damage  would  tend to shift 
the offset of the r o u n d  specimens toward  the classical 

2.0. curve, causing the character is t ic  lengths to a p p e a r  
smal ler  than  they actual ly  are. Thus,  a Cossera t  mater -  
ial may  appea r  classical ly elastic when size effects 
compete  with surface effects such as surface damage  1.5. 
and  incomple te  cells. 

E 
Such damage  appears  to be present  in the r o u n d  

specimens of the lower-dens i ty  W F l l 0  and  WF51  % 
-~ 1.o. 

grade foams as well. Figs  6 and  7 show the results for 
the r o u n d  W F l l 0 .  In this case the foam appears  tr: 
near ly  classical in bo th  bending  and torsion.  Here, 
then, the da ta  were ana lysed  with Equa t ions  6 and 7, 0.5. 
assuming  Cossera t  cons tan ts  as de te rmined  with the 
square  specimens,  and  a damage  layer  that  p rov ided  
no stiffness, i.e. with modu lus  ra t io  n = 0. In  this 
manner ,  a value for the damage  layer  thickness 
X could  be de termined.  The results  of  this analysis  are 
presented  in Table  II. The damage  layer  thickness was 
found to be from a b o u t  5 to 20% of the average cell 
size of  the foam. This represents  an average thickness;  
the damage  layer  at any  one po in t  m a y  be thicker  or  
thinner.  
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Figure 4 (~) Size-effect results for round, abrasive-machined 
Rohacell WF300 in torsion, with ( ) Cosserat curve fit for 
N 2 = 0.04. The best-fit curve for this value of N gives l~ = 0.43 mm 
and residual error = 1.36 kN z. The classical curve (- -) has a re- 
sidual error of 5.83 kN ~. 

0.0 
0 10 20 30 40 50 

a (mrn 2) 

Figure5 (0) Size-effect results for round, abrasive-machined 
Rohacell WF300 in bending, with ( - - )  Cosserat curve fit for 
N 2 = 0.09. The best-fit Cosserat curve for this value of N gives 
It = 0,38 mm, lb = 0.48 and residual error = 6.89 kN 2. The classical 
curve ( - - - )  has a residual error of 48.1 kN 2. 
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Figure 6 ([])  Size-effect results for round,  abras ive -mach ined  

Rohacel l  W F l l 0  in torsion,  wi th  ( ) Cossera t  curve fit wi th  

surface effects for modu lus  ra t io  n = 0 and  d a m a g e  layer  th ickness  

X = 0 . 0 6 m m  (0.1 cells). Cossera t  engineer ing cons tan ts  used: 
N 2 = 0.04, l t = 0.51 mm,  lb = 0.36 mm,  G = 80 MPa .  Res idual  er- 

ror  = 0.148 k N  2. The classical  curve (not shown) has  a res idual  
er ror  of 0.169 k N  2. 

1.0. 

0.8.  

$ o.s. 

E 

~ 0 . 4 .  
" 0  

O3 

0.2, 

0.0 
0 

f , / /  

i i i 

20 40 60 80 
(Diameter) 2 (mm 2) 

Figure 7 ( 0 )  Size-effect results  for round,  abras ive -mach ined  

Rohacel l  W F l l 0  in bending,  wi th  ( - - )  Cossera t  curve fit wi th  

surface effects for modu lus  ra t io  n = 0 and  d a m a g e  layer  th ickness  

X = 0.02 m m  (0.04 ceils). Cossera t  engineer ing cons tan t s  used: 
N 2 = 0.16, It = 0.36 mm,  lb = 0.49 mm, E = 216 MPa .  Res idual  er- 

ror = 0.161 k N  1. The classical  curve ( - - - )  has  a res idual  er ror  of 

0.185 k N  2. 

The density of the square specimens remained with- 
in 5% of the original density, with no obvious trend. 
The round specimen density remained within 2% of 
the original for WF300, 8% of the original for WF110, 
and 7% of the original for WF51. This suggests that 
development of a dense surface layer due to sub- 
sequent abrasive machining was not responsible for 
the size effects. Previous experience with copper foam 
had shown that an increase in material density (in this 
case caused by plastic compression of the foam during 
machining) may mimic the size effects predicted by 
Cosserat elasticity. 

The edge effects in the round Rohacell foam appear 
to be due to machining damage since the square foams 
demonstrate Cosserat behaviour. Edge effects may 
also be present in the samples that did show Cosserat 
behaviour, but the Cosserat effects dominate (which 
may have caused the discrepancies between the round 
and square WF300). In fact, at the smallest specimen 
sizes (about 4 mm) there were only about five to eight 
cells across an edge. Brezny and Green 115] suggest 
that at least 15 to 20 cells are necessary to avoid edge 
effects. The fact that the edge effects appeared in the 
round specimens and not the square may be attribu- 
table to larger volume cutting speeds with the round 
specimens causing more cell damage at the outer 
layers. 

What the relative effects are of surface damage ver- 
sus the bending and twisting of ribs in an open or 
closed-cell foam is unknown. It may be that the sur- 
face damage effect is less influential in a closed-cell 
foam since some of the ribs of the incomplete cells on 
the surface may be connected by at least a partial face, 
thereby imparting some stiffness. In the present ana- 
lysis it was assumed that the damage layer provided 
zero stiffness in the closed-cell Rohacell. It could also 
be hypothesized that some non-zero stiffness is pro- 
vided by the damage layer in closed-cell foams, which 
would cause the analysis to return a larger value for 
the damage-layer thickness for the same reduction in 
specimen rigidity. 

One of the important predictions of Cosserat elasti- 
city is the reduction of stress concentration factor for 
small holes of size approaching the characteristic 
length. The physical mechanisms underlying Cosserat 
elasticity may then be viewed as toughening mechan- 
isms. Reduced stress concentration factors for small 
holes are known experimentally in fibrous composite 
materials. The fracture strength of graphite epoxy 
plates with holes depends on the size of the hole 1-19]. 
Moreover the strain around small holes and notches 
in fibrous composites well below the yield point is 
smaller than expected classically 1-20, 21], while for 
large holes the strain field follows classical predictions 
1-22]. Further results are given in the review by Awer- 
buch and Madhukar [1]. Such results are in harmony 
with the predictions of generalized continuum mech- 
anics. However, thus far in the fibrous composites 
community, it has been fashionable to interpret non- 
classical results for fracture properties in terms of ad 
hoc criteria rather than to use generalized continua. 
One such criterion involves attempting to model or 
predict fracture by calculating the average stress in 
a region near a stress raiser, rather than using the 
actual maximum stress. A problem with this approach 
is that predictive power can be poor if the geometry of 
the stress concentration is changed. Moreover, point 
stress criteria do not make any prediction of the stress 
distribution near stress raisers, so that no prediction of 
the distribution of microdamage can be obtained. 

By contrast, the generalized continuum approach 
permits the prediction of stress and strain distribu- 
tions. For example, Cosserat elastic constants ob- 
tained via size effects experiments at small strain in 
human bone (a natural fibrous composite) were used 
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T A B L E I I  I Relation between Cosserat constants and toughness 
of Rohacel! foam (all square specimens, cut by abrasive method) 

Grade 9 l t I b Cell Kit (KlffE) z 
(gcm -3) (ram) (mm) size (MPam m )  (gin) 

(ram) 

WF300 0.38 0.8 0.77 0.65 1.1 15 
W F l l 0  0.11 0.52 0.35 0.5 0.19 6.4 
WF51 0.06 0.54 0.55 0.67 0.08 7.6 

3. Cosserat effects are linked with material tough- 
ness; however, further study is required to elucidate 
the connection further. 
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to predict the distribution of strain in a square cross- 
section bar in torsion. The predicted strain does not 
tend to zero at the corners of the cross-section, in 
contrast to the classical prediction. The experimental 
strain distribution was found to be in good agreement 
with the predictions of Cosserat elasticity but not with 
the predictions of classical elasticity [23]. 

The measured characteristic lengths are associated 
with the fracture toughness K~c [24] of Rohacell foam 
as shown in Table III. It correlated well with the 
normalized toughness (K~c/E) 2, which has the dimen- 
sions of length (r z = 0.996). Toughness correlated well 
with 93/2, as anticipated by Gibson and Ashby [25] 
(r  2 = 1.000). However, toughness was not well correl- 
ated with cell size, which was about the same for the 
three densities of foam ( r  2 = 0.09). This appears to be 
in disagreement with Gibson and Ashby, who predict 
that the toughness K~c is proportional to the square 
root of cell size; however, we were not able to indepen- 
dently vary cell size in these studies. We remark that 
these are closed-cell foams, and the structure cannot 
be assumed independent of density. Cosserat elasticity 
may be of use in connection with toughness, not only 
because they are correlated but also because structural 
features associated with strongly Cosserat elastic be- 
haviour may be intentionally incorporated into ma- 
terials [263 as a new toughening mechanism. 

5. Conclusions 
1. Rohacell polymethacrylimide foam behaves as 

a Cosserat elastic material. Cosserat elastic constants 
are determined by the method of size effects. The 
effects are manifested as a stiffening of slender speci- 
mens. It is necessary to take great care during cutting 
to avoid surface damage. 

2. Rohacell foam, when it is lathe-cut with no par- 
ticular care to avoid damage, exhibits a softening size 
effect which can be modelled by the analysis of Brezny 
and Green. 

References 
1. J. AWERBUCH and S. MADHUKAR, J. Reinf Plast. Com- 

pos. 4 (1985) 3. 
2. E. COSSERAT and F. COSSERAT, "Theorie des corps defor- 

mables" (Hermann et Fils, Paris, 1909). 
3. R.D.  MINDLIN,  Int. J. Solids Struct. I (1965) 265. 
4. A.C. ERINGEN, in "Fracture" Vol. 1, edited by H. Liebowitz 

(Academic, New York, 1968) p. 621. 
5. R.D.  GAUTHIER and W. E. JAHSMAN, J. Appl. Mech. 42 

(1975) 369. 
6. P. N. KALONI and T. ARIMAN, J. Appl. Math., Phys. 

(ZAMP) 18 (1967) 136. 
7. R.S.  LAKES, Int. J. Solids Struct. 22 (1986) 55. 
8. ldem, J. Mater. SeL 18 (1983) 2572. 
9. ldem, J. Eng. Mater. Tech. 113 (1991) 148. 

10. E. KRONER, Int. J. Solids Struet. 3 (1%7) 731. 
11. A.C.  ERINGEN, Int. J. Enong Sci. 10 (1972) 425. 
12. R.S.  LAKES, Boeing Technical Report (Boeing Commercial 

Airplanes, Seattle, WA, 1993). 
13. M. HLAVACEK, Int. J. Solids Struet. 112 (1975) 199. 
14. G. ADOMEIT, in Proceedings of IUTAM Symposium on 

Mechanics of Generalized Continua, Freudenstadt, Stuttgart, 
edited by E. Kroner (Springer, Berlin, 1967). 

15. R. BREZNYandD. J. GREEN, J. Mater. Sci. 25(1990) 4571. 
16. W.B. ANDERSON, C. P. CHEN and R. S. LAKES, Cellular 

Polym. 13 (1994) 1. 
17. G. V. KRISHNA-REDDY and N. K. VENKATASUB- 

RAMANIAN, J. Appl. Mech. 45 (1978) 429. 
18. H.C.  PAR K and R. S. LA K ES, Int. J. Solids. Struct. 23 (1987) 

485. 
19. R. F. KARLAK, in Proceedings of Conference on Failure 

Modes in Composites, IV (Metallurgical Society of AIME, 
Chicago, 1977) p. 106. 

20. J. M. WHITNEY and R. J. NUISMER, J. Compos. Mater. 
8 (1974) 253. 

21. I .M.  DANIEL, Exper. Mech. 18 (1978) 246. 
22. R.E.  ROWLANDS, I. M. DANIEL and J. B. WHITESIDE, 

ibid. 13 (1973) 31. 
23. H.C.  PARK and R. S. LAKES, J. Biomechan. 19 (1986) 385. 
24. S. K. MAITI, M. F. ASHBY and L. J. GIBSON, Scripta 

Metall. 18 (1984) 213. 
25. L. J. GIBSON and M. F. ASHBY, "Cellular Solids" (Per- 

gamon, Oxford, UK, 1987) p. 157. 
26. R.S.  LAKES, Cellular Polym. 12 (1993) 17. 

Received 8 April 
and accepted 10 May 1994 

6419 


